T TĂTĂ ÎN TĂTĂ

Seat No.

H-003-1016001

B. Sc. (Sem. VI) Examination

April - 2023

Maths: Paper - 08

(Graph Theory & Complex Analysis - II) (Old Course)

Faculty Code : 003 Subject Code : 1016001

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions :	(1)	Attempt all	questions.
----------------	-----	-------------	------------

(2) Right hand side figures indicate the marks.

1 (a)		Answer the following questions in short :		
		(1) Define empty graph.		
		(2) Define isolated vertex.		
		(3) State the graph theory's second theorem.		
		(4) Define circuit.		
(b)		Attempt any one :		
		(1) State and prove first theorem of graph theory.		
		(2) Prove the complete graph K_n has always a Hamiltonian circuit.		
(c)	(c)	Attempt any one :		
		(1) Obtain the numbr of pendant vertices in a binary tree with <i>n</i> vertices.		
		(2) If any graph has exatly two vertices of odd degree then there must be a path joining these two vertices.		
(d)		Attempt any one :		
		(1) Prove a tree with <i>n</i> vertices has $n-1$ edges.		
		(2) State and prove necessary and sufficient condition for a graph to become a disconnected graph.		

H-003-1016001]

1

[Contd...

2	(a)	Ansv	wer the following questions in short :	4
		(1)	Define planer graph.	
		(2)	Define separable graph.	
		(3)	Define circuit vector.	
		(4)	Define path matrix.	
	(b) Attempt any one :		2	
		(1)	Define incidence matrix with example.	
		(2)	In any simple connected planner graph with f regi	lon,
			<i>n</i> vertex, <i>e</i> edges $(e > 2)$ prove $e \le 3n - 6$.	
(c) Attemp		Atte	mpt any one :	3
		(1)	Prove (W_T, \oplus, \cdot) is a subgroup of W_G over the fit	ield
			GF_2 .	
		(2)	Every tree with two or more vertices is 2-cromation	ic.
	(d)	Atte	mpt any one :	5
		(1)	Prove complete graph K_5 is non-planar.	
		(2)	If G is a graph with n vertex, e edges, f faces	s, <i>k</i>
			components then prove $n - e + f = k + 1$.	
3	(a)	Ansv	wer the following questions in short :	4
		(1)	Define inversion mapping.	
		(2)	Define cross ratio of bilinear map.	
		(3)	Find fixed points of $W = \frac{6z - 9}{z}$.	
		(4)	Define fixed point.	
	(b) Attempt any one :		2	
		(1)	Discuss fixed points of bilinear map.	
		(2)	Define conformal mapping.	
	(c)	Atte	mpt any one :	3
		(1)	Find the mobius mapping which transforms pot	ints
			$Z = -1, \infty, 1$ of Z plane into $W = 2, 1, 0$ of W pla	ne.
		(2)	Prove the transformation $W = \frac{1+Z}{1-Z}$ maps the reg	ion
$ Z \le 1$ of Z plane into $\operatorname{Re}(W) \ge 0$.				
H-0	03-101	6001]	2	[Contd

- (d) Attempt any one :
 - (1) Prove the composition of two bilinear map is again a bilinear map.
 - (2) Obtain the image of circle |Z-3| = 5 of Z plane under

the transformation
$$W = \frac{1}{Z}$$
.

- (1) Define power series.
- (2) Write the maclourin's series for $\cosh z$.

(3) Find the radius of convergence for
$$\sum_{1}^{\infty} \frac{z^n}{g^n + 1}$$
.

(4) Write the maclourin's series for $\sin z$.

(1) Prove
$$\frac{\sinh z}{z^2} + \frac{1}{z} + \sum_{n=1}^{\infty} \frac{z^{2n-1}}{(2n+1)!}$$
.

- (2) If series $\sum z_n$ is absolute convergent then $\sum z_n$ is also convergent.
- (c) Attempt any one :

(1) Prove
$$\frac{1}{z^2 \sinh z} = \frac{1}{z^3} - \frac{1}{6z} + \frac{7}{360} z \dots$$

(2) Prove
$$\frac{1}{4z-z^2} = \sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}$$
 where $0 < |z| < 4$.

- (d) Attempt any **one** :
 - (1) State and prove Taylor's series for an analytic function.

3

(2) In usual notation prove that

$$\cosh\left(z+z^{-1}\right) = \sum_{n=-\infty}^{\infty} a_n z^n$$

H-003-1016001]

[Contd...

4

3

2

5

- 5 (a) Answer the following questions in short :
 - (1) Define singular point.
 - (2) Write the principle part of Laurent's expansion.
 - (3) Write the formula for finding residue of f(z) at simple pole z₀.

(4) Find residue of
$$f(z) = \frac{z+2}{(z-1)(z-2)}$$
 at $z_0 = 1$.

(b) Attempt any one :

(1) Evaluate
$$\int_C \frac{(5z-2)}{z(z-1)} dz$$
 where C ; $|z| = \frac{1}{2}$.

(2) Evaluate
$$\int_C \frac{(2z+3)}{z(z-1)} dz$$
 where C ; $|z| = \frac{1}{4}$.

- (c) Attempt any one :
 - (1) If z_0 is the m^{th} order pole of f(z) then

Res
$$(f(z), z_0) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}.$$

(2) Evaluate
$$\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + g)(x^2 + 4)}.$$

(d) Attempt any one :

(1) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{5+4\sin\theta}$$
.

(2) State and prove Cauchy-Residue Theorem.

5

3

2

4